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Abstract-Generallinearised differential equations of equilibrium are derived for a thin circular
cylinder under the influence of nonuniform initial stress. The equations are presented for three
alternative ring theories where various combinations of bending, extensional, and transverse
shearing deformations are considered. The problem of a long flexible tube buried in an elastic
continuum prestressed by nonhydrostatic biaxial field stress is studied. The classical eigenvalue
problem is formulated to determine the distributions of nonuniform stress resultants which
destabilise the tube in its initial circular configuration (neglecting the influence of prebuckling
deformations). The simplest ring theory where only bending deformations are considered is
found to provide a simple and accurate solution to the problem, and a parametric study is
carried out to facilitate the use of the solution.

INTRODUCTION

The elastic stability of buried flexible cylinders has received considerable attention in
recent years, and a number of solutions have been developed for the behaviour of these
buried structures under the influence of uniform hoop compressions, e.g. Forrestal and
Herrmann[l] and Cheney[2]. However, in-situ field stress is often nonhydrostatic, so
that nonuniform hoop compressions, bending moments, and shear forces are generated
in the buried cylinder. A recent survey by Baikie and Meyerhof[3] highlights the need
for an analysis which considers the influence of these nonuniform stress resultants. In
this study, a solution to the problem of a flexible circular tube buried in an elastic
continuum under the influence of a biaxial stress field is presented.

First, equations of equilibrium are derived for a circular ring (or cylinder under
plane strain conditions) under the influence of nonuniform initial stress resultants. The
equations are developed for a number of different levels of approximation, so that the
influence of bending, extensional, and shearing deformations can be assessed and the
simplest possible solution obtained.

A parametric study of the buried cylinder problem is then presented, and the
general behaviour investigated with particular reference made to the influence of non­
uniformity of initial stress resultants, the elastic ground parameters, the interface con­
dition, and the effect of extension and shear in the cylinder.

I. GENERAL DIFFERENTIAL EQUATIONS OF EQUILIBRIUM FOR A THIN RING

In this section, the differential equations of equilibrium for a long cylindrical shell
deforming under plane strain conditions, Fig. 1, are described. The equations are
developed in the Appendix and are similar to those of Herrmann and Armenkas[4],
although, in the present work, midsurface extension and rotation terms are adopted
as fundamental variables because they reduce the number of terms and the order of
differentiation which occur in the resulting equations.
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944 I. D. MOORE AND J. R. BOOKER

The circular tube of midsurface radius a and thickness t is assumed to have Young's
modulus E I , Poisson's ratio VI and shape factor K, (e.g. [5]) so that the hoop H, flexural
D, and transverse shear KGlt stiffnesses of the shell are defined as

H = Elt
o - vr)

D = El t
3

120 - vr)

KElt
KGlt = 20 + VI) •

0)

Using the hoop force N, bending moment M, and shear force Q resultants, the equations
of equilibrium can be expressed as (see the Appendix):

[N - ~ + H+ ~] E + Q~a + [M - ~] a:a - FE = 0

[ N - ~ + KGlt] (X + [ - ~ + KGd] ~a - Fa = 0

QE - :e [(~ - ~) E] + [ - ~ + KGlt] (X

_ [M _KGlt] ~a + ~ (D a~a) _ ma = 0,
a ae a2 ae a

(2)

where the radial w and circumferential v deformation of the tube midsurface are used
to define the midsurface extension

and rotation

E = .!. (av + w)
a ae (3a)

(3b)

and the term ~a represents the linear variation of circumferential displacement across
the thickness of the tube. The terms FE, Fa' and ma represent the tractions applied to
the structure as it deforms, and using the thickness coordinate " these are defined by:

- a~a + FE = [f,O + '/a)Y~2tI2

- a~E _ Fa = [faO + '/a)]~2tI2

ma = [fa'O + '/a)Y~2tI2'

(4)

where f, and fa are the tractions applied to the tube surface in the radial and circum­
ferential directions, respectively.

For thin rings, the shear deformations are often negligible. If the shear strain at
the midsurface is negligible, then

~a + (X = 0
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so that Q and "'e can be eliminated from the equations of equilibrium, yielding the
simpler expressions

[ M D] [I aM me] [M ] anN--+H+- e- --+- n+ --+D --F =0
a aZ a ao a a ao ~

Mae _ ~ [D e] + Nn _ ~ [D an] + me _ F = 0
a ao ao aZ ao a2 ao a '"

(5)

Thin rings have high membrane stiffness H. Examination of the first equation in
(5) indicates that, for small deformations, e is negligible. On this basis, it is reasonable
to simplify the second equation of (5) to:

me+ - - F", = O.
a

(6)

2. STABILITY OF BURIED CYLINDERS

Problem definition
The buried tube, Fig. I, is assumed to be very long, so that it deforms under

conditions of plane strain. The ground that supports the tube is considered to be a
single-phase isotropic material such as a soil or rock mass, with an incrementally elastic
behaviour characterised by two constants: Young's modulus Es and Poisson's ratio V s '

Before insertion of the tube, the ground is assumed to be prestressed with uniform
vertical <Tv and horizontal <TH = K<Tv field stresses, which induce stress resultants (see.
for example, Hoeg[6] and Einstein and Schwartz[7])

N = No + Nz cos 20

M = M z cos 20

Q = Qz sin 20.

•
(7)

Two alternative conditions will be assumed to characterise the ground-structure
interaction response at the interface.
(a) A perfectly rough condition, resulting in complete compatibility of radial and cir­

cumferential displacements, and full transmission of normal and shear tractions,
across the interface.

(b) A perfectly smooth condition, where shear stress is not transmitted between the
structure and ground, and where circumferential displacements are not continuous,
due to interfacial slip.

Elastic ground
Es . Vs

Springlina

FIQld ~rrvStraSS125

lTH = Kfjll

Crown

InvClrt

Fig. I. Coordinate description.

SAS 21:9-8
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The real interface condition will be somewhere between these two extremes, be­
cause there will, in general, be some finite limit to the shear stresses that can be
developed between the cylinder and ground.

The tractions applied to the tube by the ground will be assumed to remain constant
in direction relative to the initial geometry of the tube, during the critical deformations.
The rotation of these interaction forces has been examined in a recent publication of
Moore and Booker[8], and was found to be unimportant whenever the supporting
ground significantly increases the tube stability.

Ground restraint
A straightforward linear elastic analysis of the elastic continuum surrounding the

cylindrical tube, e.g. Timoshenko and Goodier[9], provides a relationship between the
harmonic coefficients of the radial 0= and circumferential l' tractions applied to the
ground at the interface, and the coefficients of radial wand circumferential v displace­
ment

(0=, w) (0=0, Wo) + L (O=n, Wn) cos n8
n=2 (8)

For harmonic n,

(1', v) L (Tn, Vn) sin n8.
n=2

(9)

where the shear modulus of the ground Gs = Es /2(1 + vs )'

Table 1 gives details of the relationship between structural and ground displace­
ments and tractions at the interface, for the perfectly smooth and perfectly rough con­
ditions. Use of these leads to an expression for ground restraint relating the coefficients
of radial wand circumferential v displacement and incremental radial 0' and circum­
ferential T tractions on the structure

where

(0', w) (0'0, Wo) + L (O'n, Wn) cos n8
n=2

(10)

(11)

(T, v) = L (Tn, Vn ) sin n8,
n=2

and A n is provided in Table 1 for the two ideal interface conditions.
The "tractions" acting on the structure Fe' Fa consist of two components

where ~a and TJa are the "tractions" which result from the ground restraint at interface,
and ~e and TJe are any other incremental "tractions" applied to the structure (e.g. as
a result of field stresses acting in the elastic continuum).
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Table 1. Interface conditions and ground restraint matrix

Rough interface

947

Smooth interface

Stress conditions

Displacement compatability

Ground restraint matrix

An(_a)
-2Gs

O'n = Un

Tn = Tn
Wn = Wn

Vn = lin
2n(1 - V s ) + 1 - 2vs n(1 - 2vs ) + 2 (1 - vs )

(3 - 4vs ) (3 - 4vs )

nO 2vs ) + 2(1 - vs ) 2nO - vs ) + I - 2vs

(3 - 4vs ) (3 - 4vs )

(Tn = an
Tn = f n = 0

Wn = Wn

(n
2

1) 0
(2n(1 - vs ) + I - 2vs )

o 0

Use of eqns (3, 4) leads to

where

(12a)

and

n(A11 + A~2) - A 12(n2 +
1) n2A1t - 2nA12 + A~2

1)]

(12b)

(Fe, E) = (~g + ~g, EO) + ~ (~~ + ~~, En) COS n6
n=2

(Fct> a) = ~ (T)~ + T)~, an) sin n6.
n=2

(13)

Buried cylinder equations
Substitution of eqns (7, 12) into the differential equation of equilibrium for the

inextensional case (6) yields

{
N2
2«4+ (No + ~ - B~2) a2 - T)~} sin 20

+ {~2 (Xs + (No + ~ - Bh) (X3 - T)~} sin 30

+ n~4 {~2 (an-2 + a n+2) + (No + n~? - B~2) an - T)~} sin n6 = O.

Because the harmonic functions are orthogonal

where

8 1 = {a2' a3, (X4, .•.}

r l = {T)~, T)~, T)~, •••}

(14)

(15)
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and

No + P 2 0
N2

0 0 0
2

0 No + P 3 0
N2 0 0
2

Cl N2 0 No + P4 0
N2 0 (16)

2 2

0
N2 0 No + P 5 0

N2

2 2

with Pn = n2 D/a2
- B~2. The nonuniform component of hoop force N 2 acts to couple

the different coefficients of el, which are solved independently for the uniform hoop
force problem (N2 = 0). The superscripts on 8, r, and C refer to the number of degrees
of freedom assigned to each harmonic in the series.

If all of the bending, extension, and shear terms are retained, then from (2)

where

3 {r.e e m2 r. e e m3 }Tr = ",2,1]2, - , .,,3, 1]3, - , • •• ,
a a

X2 0 <1>2 0 0 0
o X3 0 <1>3 0 0

C3 = <l>f 0 X4 0 <1>4 0
o <l>j 0 X5 0 <1>5

(17)

(18a)

Xn =

D n
H + "2 + B ll + No

a

BI2

D
-n­

a2

B I2
D

-n­
a2

KG[t

n2D
KG[t +-2

a

(18b)

N 2 - M 2

2

o

Q2 nM2--+--
2 2

o

N 2 - M 2

2

-M2

2

Q2 + (n + 2) M
22 2

-M2

2

-M2

2

(18c)

Solution of stability problem
The linearised equations of equilibrium (15, 17) relate the harmonic coefficients

of deformation 8 with the "tractions" applied to the tube r. The theory has been



Behavior of buried flexible cylinders 949

developed on the basis of small deformations n, E, and 1\18 (see the Appendix), and the
restraint provided by the ground surrounding the tube usually does act to prevent large
deformations[lO]. The theory can, therefore, be used to determine the prebuckling
deformations which occur as a result ofthe nonhydrostatic field stresses initially present
in the elastic continuum (associated with nonzero values of 1l~ and ~~). It is also rea­
sonable to neglect the effect of prebuckling deformations and solve for the stress re­
sultants N, M, and Q, which elastically destabilise the tube in its initial circular shape.

To solve the stability problem, the infinite sets of eqns. (15, 17) are truncated, and
separated into two components, C = Cs + ACN • The static matrix Cs contains all
the terms from C which are independent of the stress level. The stability matrix CN

is a function of the stress resultants N, Q, and M, and is scaled by the stress level
factor A.

The linear eigenvalue problem [det(Cs + AerCN ) = 0] is then solved for the critical
stress level Aer . A convergence check is necessary to assess the influence of the terms
which have been discarded, and a straightforward procedure has been adopted where
the number of equations considered is progressively increased until the stress resultants
converge to the critical values. The form of the critical deformation can also be de­
termined by obtaining the eigenvector associated with Aer . The eigenvector will contain
many harmonics of n, E, and 1\18 when the hoop compressions are nonuniform, but for
N z = Mz = Qz = 0 the eigenvector will have one single "critical harmonic."

This solution for the critical nonuniform stress resultants can be simplified to yield
less general solutions obtained by other workers. The solution ofSmith and Simitses[ll]
for the uniform hoop force which destabilises an unsupported ring in the "nth" har­
monic

(19)

is obtained from (17, 18) with N z = Bql = Bqz = B~z = O. Other solutions for a buried
cylinder with uniform hoop stress [1, 8] are then obtained when KGt is very large.

3. PARAMETRIC STUDY

Statement ofparametric solution
Consider a long, flexible, cylindrical shell, buried a long way from the surface.

Field stresses induce the nonuniform hoop force N = No + N z cos 26, which acts to
destabilise the tube. The uniform component of critical hoop force No can be written
in the form of

3D -z
No = - - (n + l)IRvRe

a
(20)

where D = £lt3/12(1 - vr) is the flexural rigidity of the cylindrical shell under plane
strain conditions; Ii is the approximate buckling harmonic for the uniform hoop
compression case[8],

I is the influence factor for the effect of nonuniformity of the initial stress resultants
in the cylinder, Fig. 2; Rv is the correction factor for the effect of Poisson's ratio of
the soil V s and the interface condition, Figs. 3 and 4; and R e is the correction factor
for the effect of extension and shear deformation in the cylinder.

Under most circumstances, the buckling deformations are effectively inextensional
with plane sections remaining plane (further discussion appears in a following section)
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so that R e = 1.0. Any particular problem is characterised by the level of nonuniformity
of hoop compression N z/No, the relative flexural stiffness of the cylinder D/Gs a3

,

Poisson's ratio of the ground vs , and the interface condition, so that the uniform com­
ponent of critical hoop compression No is obtained using eqn (20) in conjunction with
Figs. 2, 3, and 4.

Influence of nonuniformity of hoop compression
Simplified equations (15, 16) have been developed on the basis of E = a + $B =

O. These indicate that when there is negligible membrane extension and transverse
shear deformation, the structural stability is dependent only on the hoop compressions
in the tube. The importance of extension and transverse shear are considered further
in another subsection.

Five levels of nonuniformity of hoop compression N z/No have been presented in
the parametric solution, ranging from 0 to 1. The first of these limits represents a
perfectly uniform hoop force, and the latter is the combination associated with an
unsupported cylinder under uniaxial field stress. This second limit is not achieved in
practice, but may be approached in the case of cylinders buried in highly over-con­
solidated soil.

Figure 2 indicates that the influence coefficient I is strongly influenced by the level
of nonuniformity of hoop force Nz/No. For soft ground, D/Gs a3 > 1 the influence is
slight, but in stiffer ground the effect is quite marked.

As the ground stiffness increases, the stability of the buried tube becomes depen­
dent on the maximum hoop compression rather than both uniform and deviatoric com­
ponents. In fact, as D/Gs a3

- 0 the limit of I

(21)

where Iu is the influence coefficient for a uniformly loaded cylinder N z/No = O. This
occurs because the wavelength of the critical deformation (indicated roughly by 2-rra/
n) decreases as the ground stiffens. Eventually, there are one or more buckles in the
region of maximum hoop force, so that it is the maximum value (No + N z) that controls
the elastic stability.

Because the limit (21) is also the minimum value, a simple and conservative ap­
proach to problems involving nonuniform hoop compressions is to use the maximum
hoop compression (No + N z) as the representative value, and to affect a comparison
with the critical hoop compression resulting from an analysis of the uniform problem
(e.g. Forrestal and Herrmann[l] and Moore and Booker[8]). Use of the parametric
solution by means of (20), with Figs. 2 to 4, is, however, straightforward, and will
ensure a more accurate and economical estimate of the critical hoop force. It is im­
portant to note that the practice of using the average hoop compression No as a rep­
resentative value (e.g. Duns and Butterfield[I2] and Gumbel and Wilson[13]) will lead
to an unconservative solution. This practice was based on the work of Anderson and
Boresi[I4], and it is not appropriate to elastically supported cylinders.

The nonuniform component of hoop force has another important effect on the
critical response of the buried cylinder. When the hoop compression is uniform, it is
well known that one isolated mode of deformation is adopted around the complete ring.
As the relative stiffness of the ground changes, different modes are preferred, and the
critical deformation swaps from one to another, producing the familiar cusped curve
shown in Fig. 2 (Nz/No = 0). The nonuniformity of hoop compression acts to couple
different modes, and there is a more gradual transition from mode to mode. For the
extreme case shown, Nz/No = 1, the curve for influence coefficient is a smooth one,
with no discernable discontinuities in slope.

Influence of interface condition and Poisson's ratio Vs

The basic theory has been developed for the two alternative types of interface
behaviour-perfectly rough and perfectly smooth. Static analysis of the system (e.g.
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Fig. 5. Influence of hoop force nonuniformity on correction factor for Poisson's ratio.

Hoeg[6] and Einstein and Schwartz[7]) to determine the distribution of stress resultants
should consider both the influence of the interface condition and Poisson's ratio of the
ground V S ' The present analysis takes the issue further, by considering the effect of
interface condition and Vs on the elastic stability of the buried tube.

It has been found in studies of the uniform hoop force problem[1, 8] that when the
ground is incompressible, Vs = 0.5 (e.g. for an undrained clay), there is no difference
in critical hoop compressions for smooth and rough cylinders. This is also true for the
nonuniform hoop compression problem, because the nature of the elastic ground re­
sistance is essentially the same. For this reason, the values of influence coefficient I,
Fig. 2, are provided for Vs = 0.5, and are independent of interface condition.

Correction factors Rv for V s ¥ 0.5 are provided in Figs. 3 and 4 for the rough and
smooth interface conditions, respectively, and for hoop force nonuniformity N 2/ No =
i. The influence of N 2/No on R v is illustrated in Fig. 5, where curves are given for a
range of values of N 2/No, with V s = 0.3. It is apparent from this figure that the non­
uniform component of hoop force acts to couple the modes of the critical deformation
and smooth the transition from mode to mode, without seriously affecting Rv • For this
reason, it is reasonable to neglect the influence of N 2/No on R v , and use the values of
R v provided in Figs. 3 and 4 for the full range of N 2/No, 0 < N 2/No < 1.

In general, it can be concluded that the influence of interface condition and Pois­
son's ratio of the ground on the elastic stability of a tube under nonuniform hoop
compression is largely the same as it is when the hoop compressions are uniform.

Effect of shear and extension in the thin cylinder
The parametric solution to the buried cylinder problem which has been presented

was based on the assumption that the buckling deformations of the buried cylinder
were without extensional and transverse shearing components. The appropriateness of
this assumption has been examined elsewhere (see Moore and Booker[15]) by making
comparisons between the two solutions which were developed, eqns (15) and (17). It
was concluded in that study that, for most practical cases, the extensional and trans­
verse shearing deformations do not significantly lower the elastic stability of buried
flexible cylinders (i.e. R e = 1). The possible exception is thicker cylinders tla > 0.01,
under highly nonuniform initial stress, but for these cases the elastic solution is probably
inappropriate, as the high bending moments will result in an inelastic structural re­
sponse.
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4. SUMMARY AND CONCLUSIONS

Generallinearised differential equations of equilibrium have been derived, after
Herrmann and Armenakas[4], which describe the equilibrium of an initially circular
ring under the influence of nonuniform initial stress. More convenient middle surface
deformation quantities than those previously adopted have been used to simplify the
equations and facilitate their use in solving ring deformation and stability problems.
The equations for three alternative ring theories have been presented:

(i) An inextensional theory where only bending deformations are considered.
(ii) An extensional theory, where bending and extensional deformations are consid­

ered.
(iii) A more comprehensive theory, which considers bending, extensional, and trans­

verse shearing deformations.
The problem ofa flexible cylindrical tube buried in an elastic continuum prestressed

by nonhydrostatic biaxial field stresses has been considered. The classical eigenvalue
problem has been formulated to determine the distributions of nonuniform stress re­
sultants which result in instability of the buried cylinder in its initial circular config­
uration (Le. when the influence of prebuckling deformations on elastic stability is neg­
lected). Details of the appropriate equations have been presented for both the
inextensional theory and the more comprehensive theory which considers bending,
extensional, and shearing deformations.

The behaviour of buried cylinders under the following conditions was considered:
(i) Two ideal soil-structure interface conditions-perfectly rough and perfectly

smooth;
(ii) A range of relative cylinder stiffnesses-from very flexible to very stiff;

(iii) A range of Poisson's ratios of the ground;
(iv) A range of relative cylinder thicknesses;
(v) A variety of distributions of initial stress resultants.
From this examination it was concluded that
(1) The distribution of initial hoop compressions in the cylinder is dominant in de­

termining the cylinder's elastic stability. Shear force and bending moment re­
sultants are relatively unimportant.

(2) Nonuniformity in the distribution of hoop compressions significantly influences
the cylinder stability. It influences the form of the critical deformations as well
as the level of critical stress.

(3) The influence of interface condition and Poisson's ratio of the ground are largely
independent of the nonuniformity of the initial hoop compressions.

(4) The simplified inextensional solution can be used instead of the more compre­
hensive solution to evaluate the critical hoop forces under most practical circum­
stances.

(5) It is always conservative when checking the elastic stability of buried cylinders
under nonuniform hoop compressions, to use the maximum value of hoop force
in conjunction with the solution of the uniform hoop force problem. The practice
of using the average hoop compression in conjunction with the uniform hoop force
solution (Duns and Butterfield[12], Gumbel and Wilson[13]) is generally uncon­
servative.
A parametric solution based on the inextensional theory has also been presented

in the form of influence charts, which may be used directly in hand calculations to
predict the elastic stability of deeply buried cylinders under the influence of nonuniform
hoop forces.
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APPENDIX: GENERAL DIFFERENTIAL EQUATIONS OF EQUILIBRIUM FOR A
THIN RING

In this appendix, we will develop the equilibrium equations of the long thin circular shell deforming under
plane strain conditions, Fig. I. The derivation parallels that of Herrmann and Armenakas[4], although, in
this presentation, it proves more convenient to adopt the midsurface extension and rotation as fundamental
variables.

The equations of equilibrium are developed from the equations of virtual work in the deformed state,
Washizu[16]

(AI)

where X, e, and t are the axial, circumferential, and thickness coordinates of the shell, respectively, a is the
initial radius of the shell midsurface, au is the second Kirchoff-Piola stress tensor, and Eij is the finite
Lagrangian strain tensor within the initial volume Vo. The vector of tractions fj is applied to the cylinder
surface S, and Uj is the vector of displacements. All subscripts i andj range through the index set (x, 6, t).
The equation of virtual work for fmite deformations (A1) can be developed from the equations of equilibrium
of a deformed body. The equation is defined in terms of the arbitrary or "virtual" displacement field flUj and
the strain field variation liEu, which can be obtained from Eij using the usual conventions of variational
calculus.

The finite strain tensor Eij for conditions of plane strain is given by, Love[l7]:

I ( auo) I [ ( auo)
Eoo = a + t u, + ae + 2(a + t)2 U, + ae
E = au, + ! [(auo)2 + (au()2]
" at 2 at at

auo 1 (au, ) 1 [( auo) auo2Eo, = - + -- - - Uo + -- u, + - - +at a + t a6 a + t a6 at (
au, _ u ) au,] .
a6 0 at

(A2)

Alternative shell theories can be developed on the basis of simplified expressions for finite strain Eij, but
the complete virtual work derivation is favoured by the present authors. Since the ring is thin, it is reasonable
to assume linear variations of displacement across the shell, viz:

uo(6, t) = v(6) + tllJo(6)
u,(6, t) = w(6) + tM6).

(A3)



Behavior of buried flexible cylinders

Stress resultants are defined by the relations

f
'/2

N = O"ee dt
-1/2

f '/2
M = O"eet dt

-1/2

f '/2
Q = (1e, dt

-1/2

f
'/2

N" = 0",,0 + tla) dt.
-1/2

955

(A4)

The net tractions per unit length of midsurface are defined by the difference of values at top and bottom
surfaces:

T = [feO + tla)] ~i;~

me = [feW + tla)] ~i;~

(1 = [feO + Va)] ~i;~

mt = [feW + tla)] ~i;~.

(A5)

Equations (AI, A2, A3, A4, A5) lead to the following set of equilibrium equations:

ME MiJl/le M
N + NE - - + - - + - 1/1, + Ql/le - F. = 0

a a iJO a

MOo Ml/le M iJI/I,
No. - - - - + - - + Q + QI/I, - Fa. = 0

a a a iJO

I iJM iJ (ME) MOo me- - - - - - - - + Q + QE + N"I/Ie - - = 0
a iJO iJO a a a

M ME iJ (MOo) m,- + - - - - + Qo. + N,dl + 1/1,) - - = 0,
a a iJO a a

(A6)

where the extension E and rotation 0. of the midsurface can be expressed in terms of the midsurface dis­
placements

E=!(~+W)a iJO

0. = ! (iJW - v)
a iJO

and the "tractions" F. and Fa. are defined by:

(A7)

0"=

T =

_ iJFa. + F
iJO •

aF.- aa - Fa..

(AS)

Unique solutions of eqn (AS) for Fa. and F. exist, because the general solutions

Fa. = C1 cos 0 + C2 sin 0

F. = C2 cos 0 - C1 sin 0

lead to nonperiodic deformations such as W = C30 cos 0, which must be zero (Le. CI = C2 = 0).
The eqns (A6) are valid for any general set of finite deformations E, 0., I/Ie, 1/1, with their associated stress

resultants N, M, Q, N" and tractions F., Fa., rna, me, We now restrict the discussion to small deformations
E, 0., I/Ie, 1/1" so that a linear theory can be developed where nonlinear deformation terms are neglected. On
this basis, we assume Hookean relations between components of second Kirchoff-Piola stress and linear
components of strain. Integration through the shell thickness then leads to expressions for the stress resultants

N= (H + !!..) E _ !!.. iJl/le
a2 a2 iJO

Dal/le DM=----E
a iJO a

Q = KGJf(I/Ie + 0.),

(A9)

where it is assumed that normal stress 0"" is negligible compared with the membrane stress O"ee (Le. conditions
of plane stress apply). This is the usual approximation employed when developing thin shell theories (see,
for example, Donnell[IS]), and the two straightforward examples which follow demonstrate its validity. For
a ring loaded with uniform external pressure p, O"ee = palt, while the normal stress 0"" ranges from zero to
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p. When the applied loads are nonuniform, the bending moment M induces a normal stress CT" ranging from
o to CTMfat, while the same moment induces circumferential stress CT66 which varies between ±CTMft2.

Before substituting the expressions for stress resultants (A9), the equations of equilibrium are further
simplified. Firstly, the stress resultant N" is eliminated from the third equation of (A6), using the fourth of
(A6). Then IjIt and mt are discarded, because they are negligible compared to the other deformations E, a,
1j16 and "tractions" FE, Fa, and m6, respectively. (The term IjIt was originally included in eqn (A3) so that
the fourth equation of (A6) could be formulated.) The equations outlined in Section 2 then follow on sequential
application of the special conditions

1j16 + a = 0

and

E = 0,

and substitution of the constitutive equations (A9).

(A lOa)

(AlOb)


